Agricultural Scientist Reflects on 20 Years of Perennial Grains Work

By Dana Christel

Jerry Glover, Senior Sustainable Agriculture Advisor for the United States Agency for International Development, has been an important figure in perennial grains research. He was recognized as a National Geographic Emerging Explorer in 2010 for his work on soil health and perennial grass systems at The Land Institute.  He has been an author of several significant papers on perennial agriculture, and worked to display perennial root systems at the United States Botanic Garden.  Today he continues to be influential in communicating the benefits of perennial systems and promoting perennial crops in agriculture in the developing world.  I had the pleasure of meeting with Dr. Glover over a warm cup of tea on a snowy day in Michigan and ask about his work over the past 20 years.  Glover shared his lightbulb moment of inspiration, tactics he uses to engage audiences in the topic of soil health, and his thoughts on perennial grain Kernza®, recently introduced to food markets by The Land Institute.

Q: Can you walk me through the history of your involvement in perennial grains work? Why did you choose to work with perennial grains?
A: I had one of those Eureka moments. I was in Kansas in 1996 doing research comparing soil quality between organic and conventional farming systems.  I was seeing differences between those two types of systems, but I wasn’t really impressed with the differences I was seeing.  So then I wondered, what does soil quality look like under natural grassland ecosystems? Luckily, I was able to find a relatively intact prairie meadow with the same soil type as the farms I was studying. I was looking at soil aggregate stability, soil C, N, and P levels, among other things and found that the meadow had much greater soil quality, especially organic matter than the two farming systems I studied.  I found out that a farmer had been haying this meadow for a while.  I started doing some back of the envelope calculations while I was in the field to figure out the nutrients taken off in the hay, and it was then that I had this sort of epiphany: perennial grass systems can support similar nutrient yields as annual agriculture, but without all the depletion of soil organic matter and soil quality. 

So I went back to Washington to finish my Ph.D. and then I returned to The Land Institute to set up some more rigorous studies.  I worked with an interdisciplinary team of ecologists and soil biologists and we studied above ground food webs of insects, looked at nematode populations and other chemical, biological and physical soil properties of perennial grass systems.  We found that these systems can sustain harvests of similar levels of N, P, and K as annual wheat systems.  We found that with no N fertilizer inputs that N was still getting into the soil.  Now part of this has to do with legumes being present in some of those ecosystems but I credit biological N fixation in and around the perennial grass roots to be a big part of soil N in natural grassland soils.  So I got really excited about everything we were finding, but you can’t really eat hay. So how do we emulate this in a viable way in our agricultural systems? And I thought perennial grain crops were a remarkably feasible and revolutionary way to do so. 

Q: In what capacity are you working with perennial grains now?
A: In my work now I deal with a wider variety of farming systems and it’s a much wider scope dealing with more socio-cultural aspects.  Though the geographic and thematic scope of my work has expanded I still include and talk about perennial grain crops a lot in my work. 

Q: There’s a popular picture of you with roots that shows up in a lot of articles about perennial grains and I notice in many of your talks that you bring a perennial grass with long roots to show to your audience.  How has this imagery helped influence, educate and inspire people?
A: When people see perennial grain crops growing above ground next to annual crops, they look pretty similar and there’s little indication of the differences in the benefits or services they provide.  But when you look below ground it’s easy to see those differences.  I used to try to explain the benefits by talking about the good things perennials do for soil, but this does not capture people’s imaginations.  It bores people.  But when you show the roots it inspires people to what the profound implications of those roots are below ground. 

Using the roots as a prop is a tool to sustain people’s interest but transfer their attention to the more important topic of soil.  Showing the roots seems to change the nature of questions from an audience. Instead of asking big picture questions about how perennial grains can fix societal problems, they start to ask more questions about how the roots absorb nutrients or retain water.  Those are the things I want to talk about.

Q: What’s the biggest barrier in perennial grains work?
A: Plant breeding.  Perennial grains can’t catch on in countries because they don’t really exist yet in viable forms that can compete with annual grain crops.  I see big potential in some perennial legumes in the immediate future in developing countries, such as those we work with in Africa, but even there, varieties need to be improved to be more widely used and with better effect. 

Q: Let’s talk about Kernza® for a little bit. Kernza® has been one of the most promising perennial crops coming out of The Land Institute.  It seems though, that there might be a lot of management required to maintain grain yields over time. Do you think that the management needs would negate the benefits of growing a perennial crop?
A: Disturbance might make a system more productive.  Well established perennial grass systems aren’t cycling a lot of nutrients.  Using some kind of disturbance, such as grazing or rotations, might keep perennial systems in what ecologists have called a mid-successional state so that nutrients are more actively cycling might be the best thing.  I think Tim Crews at The Land Institute is looking at how disturbance can play a role in sustaining productivity. So even if we would have fields of Kernza® that measure 25% less in soil quality than prairie, that is still remarkably better than annual wheat fields. 

But, yield is no small concern.  We don’t want to have to use twice as much cropland to grow the same amount of grain.

Q: Do you think that Kernza® is best suited for a particular region or farming system?
A: What is exciting about perennial grains and Kernza® is that we are adding to the toolbox of options for farmers.  By providing one more economically viable option for a crop to grow, you’re automatically increasing diversity.  I think it will be interesting to see how farmers use it in their systems.  I could see farmers with livestock getting excited about it, using it in rotations easily and alleviating weed pressure and potentially breaking disease cycles. These multi-purpose options will be important in places where there are land constraints.  But here in the U.S. there isn’t really a land constraint so I see farmers using them in rotations. 

There’s also going to be some differences in the way farmers understand this new crop depending on the region.  Here in the upper Midwest and in dairy country I think farmers will see the value in having perennials because they have animals.  They’re more used to growing perennials for forage and they’ll see the inherent benefit of having something that is dual purpose for grain and forage.  Farmers on the prairie might not grasp that as well, but they do understand the cost of planting, fertilizing and managing weeds every year. So if they can see that fewer inputs are required with growing something like Kernza then it will be more attractive to them.  For example, there’s a study from Australia showing that the yield of certain perennial crops only has to be 60% of annual crops to be economically viable since there is reduced inputs.  

Q: It seems like a lot of scientists currently working on Kernza and other perennial crops were part of the Land Institute Graduate Fellowship Program.  How do you think that has contributed to success?
A: I think that the graduate research fellowship was an important catalyst for expanding perennial grains research in the U.S. and throughout the world.  Without that effort I think that the perennial grains community would be a lot smaller, and given the small amount of money allocated for it each year, I think they got a lot of return on it.  I thought it was very successful.  

Q: What does the future of perennial grains work look like?
A: I see two trajectories.  Expansion in niche markets in the Western world like with Kernza in things like beer and multi-grain bread as a way to increase awareness and show potential is one way.  In places like the U.S. it’ll be only after a significant period of time, due to the time it takes for breeding, for it to expand more widely. Also U.S. agriculture has such high production levels already, so perennial grains have higher yields to compete with here.  But perhaps more significant is development and expansion in the developing world where people are resource poor and food insecure.  These places have the most to gain and would see those gains more immediately. 



This entry was posted in Scholarly by Vicki Morrone. Bookmark the permalink.

About Vicki Morrone

I work with farmers and researchers to bring together science and application of perennial grains, especially Kernza, also known as intermediate wheat grass. Share your information and we can post on this site.

Leave a Reply

Your email address will not be published. Required fields are marked *